# The muon site: a toolbox

Roberto De Renzi<sup>1</sup>, Fabio Bernardini<sup>2</sup>, Sandro Massidda<sup>2</sup>, Tapas Samanta<sup>1</sup>



<sup>1</sup>Dipartimento di Fisica and C.N.I.S.M. Parma, Italy



<sup>2</sup>Dipartimento di Fisica Cagliari, Italy

Aim: put together an easily shearable tool to identify the muon site.

#### Functions and strategies:

- 1. Open software with simple mathematics and graphics (matlab like)
- 2. Access to a crystallographic library, to define and visualize lattice & magnetic
- 3. Exploration of tentative muon sites:
  - Simple dipolar sums, with given point-like magnetic moments
- Point charge electrostatic potential, e.g. constrained on spheres around anions
- 4. DFT calculation of muon site
  - Full muon potential
  - Zero point motion
  - Full hyperfine field (contact and dipolar)
- 5. Documentation, both embedded and web based

## 1. Python http://www.python.org/ 🦆 python"

Open software, available on all OS

Quick interface to software in any other language, see bona below

Ipython, specialized for interactive use, with more extensive help

Matlab-like dialect http://matplotlib.sourceforge.net/



## 2. ASE: Atomistic Simulation Environment

https://wiki.fysik.dtu.dk/ase

#### Includes

full crystal symmetry groups

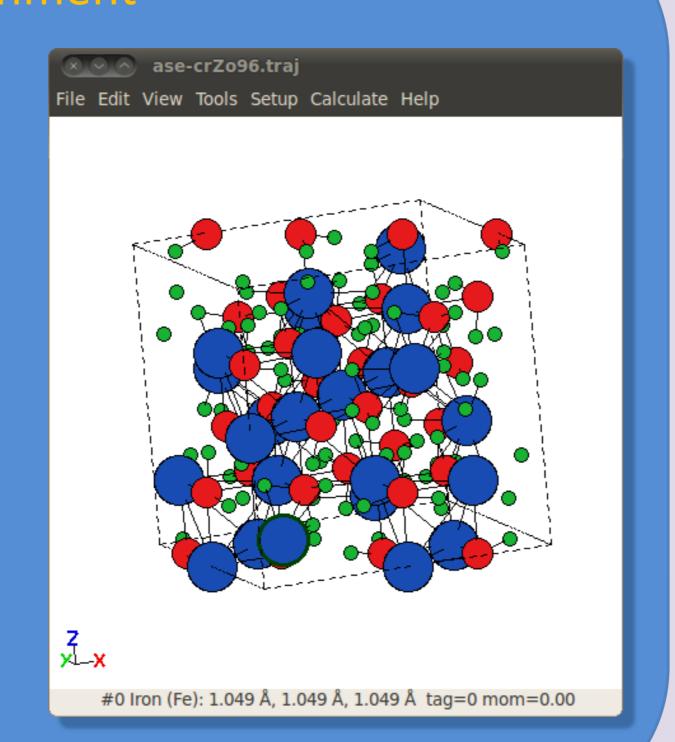
lattice visualization

initial magnetic moments and ion charges interface to many DFT calculators

#### import ase

import numpy as np

from ase.lattice.spacegroup import crystal a = 8.3940


fe3o4=crystal(['Fe','Fe','O','H'], basis=[(0.12500, 0.12500, 0.12500),

> (0.5, 0.5, 0.5),(0.25480, 0.25480, 0.25480),

(0.285, 0.285, 0.1302)],setting=2,

spacegroup=227, cellpar=[a, a, a, 90, 90,

size=(1,1,1),pbc=False) ase.visualize.view(fe3o4)



### 4. Density Functional Theory calculator

Many different programs can be installed and invoked with a simple python command:

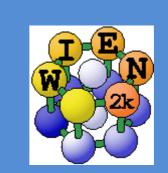















DFTB+

Asap

More can be interfaced, including Wien2k



One is already included and allows simple calculations

EMT

Finding the muon site by DFT may be anything between straightforward (ionic crystal) and a subtle art (the muon bond in a lattice with all-electron atoms, typically rare earths)

## 3. ASE

Zero-order muon site validation. Reproduce two types of published results

Those obtained by simplified strategies, such as YBa<sub>2</sub>Cu<sub>3</sub>O<sub>6</sub> [1] and Fe<sub>3</sub>O<sub>4</sub> [2], :

i. find point charge potential V minima, ii. check dipolar sums against local field B,,

Dipolar sum code 5 declarations

12 lines of code with check of convergence

Point charge potential with Ewald's trick 4 declarations 26 lines of code

See also

http://www.fis.unipr.it/~derenzi/dispense

(node pmwiki.php?n=MuSR.ASEStart#potential)

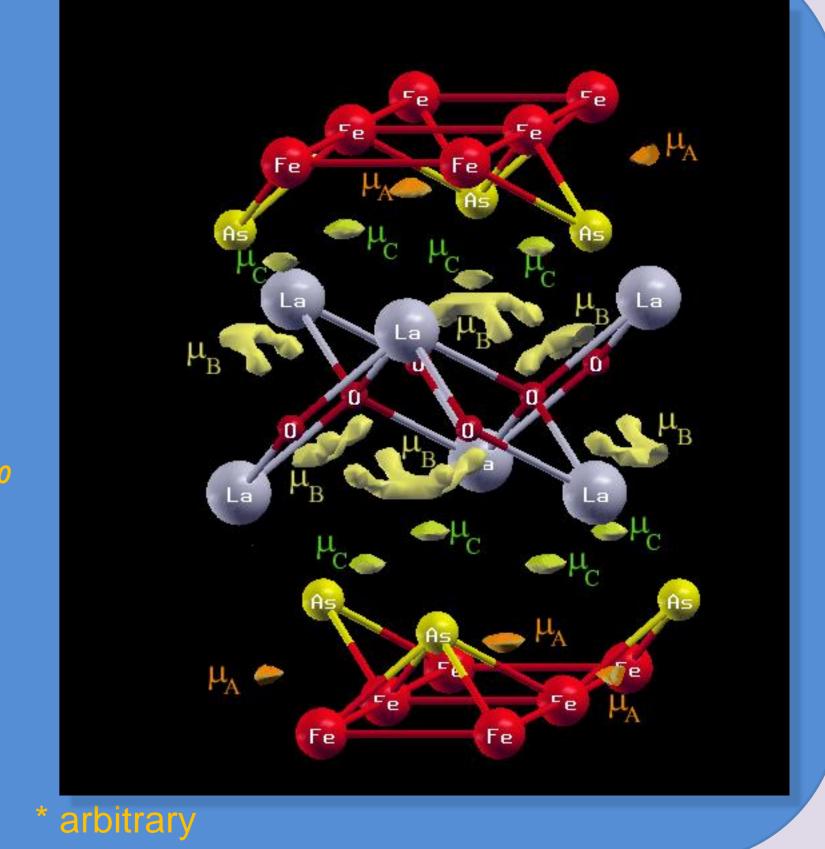
Those obtained by DFT (see box 4, on the right)

# 4. Density Functional Theory by F. Bernardini

Example, cfr. [3]: LaFeAsO

$$V=V_{\mu}=-V_{e}$$

only Coulomb!


Muon site(s) volume:

centered at min(V) • defined by harmonic zero energy E<sub>0</sub>

 $V = \min(V) + E_0$ 

within the isopotential surface

0.55 V(eV)  $E_0(eV)$  0.15 0.12 0.16



# 5. Documentation

Embedded, ipython provides

tabbed completion of commands

• interactive help on each available command just by entering command?

Web based, a wiki (under construction) with instructions on how to install the various bits

- Python itself
- ASE
- The chosen DFT
- The toolbox
- examples of how to run the toolbox

### To be done

Packaging, distribution, installation instructions Choice of suitable DFT for ASE

Full hyperfine field calculation

Muon bond

More extensive validation

### Acknowledgements

We thank G. Allodi for suggestions and discussion. This work is supported by NMI3 grant FP7-226507, WP20 Muons Task 4 Simulation codes

### References

[1] M. Weber, P. Birrer, F. N. Gygax, B. Hitti, E. Lippelt, H. Maletta, A. Schenck, Hyperfine

Interactions **63**, 207 (1990)

[2] M. Bimbi, G. Allodi, R. De Renzi, C. Mazzoli, H. Berger, Phys. Rev. B 77, 045045115 (2008) [3] H. Maeter et al., Phys. Rev. B 80, 094524 (2009)