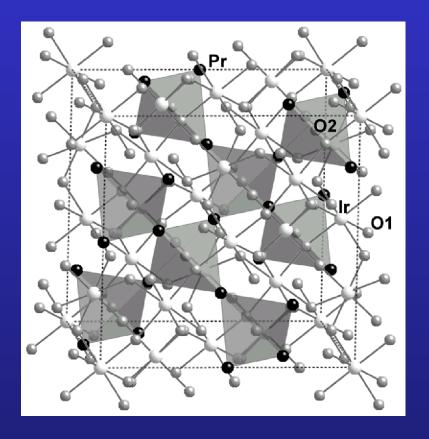
# Long-range order and moment fluctuations in the pyrochlore iridate Eu<sub>2</sub>Ir<sub>2</sub>O<sub>7</sub>

Songrui Zhao, J. M. Mackie, D. E. MacLaughlin (U.Calif. Riverside), O. O. Bernal (CSU Los Angeles), J. J. Ishikawa, Y. Ohta, S. Nakatsuji (ISSP Kashiwa)

Physical Review B 83, 180402(R) (2011)

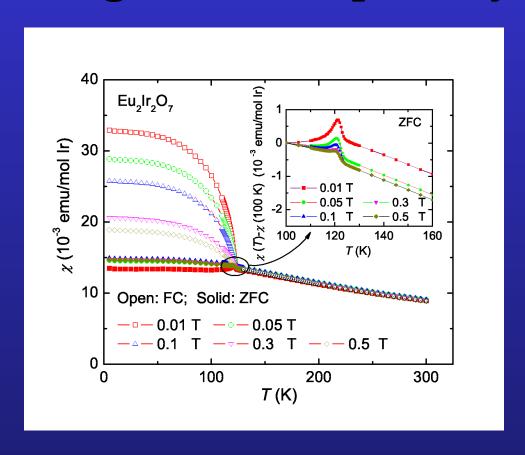
Supported in part by U.S. NSF (UCR, CSULA), JSPS & MEXT (Tokyo).




#### **Outline**

- Pyrochlore rare-earth *iridates*  $R_2$ Ir<sub>2</sub>O<sub>7</sub>: metal-insulator (MI) transition across rare-earth series.
- Eu<sub>2</sub>Ir<sub>2</sub>O<sub>7</sub>: Eu<sup>3+</sup> nonmagnetic (Hund's-rule L = S, J = 0). Only Ir<sup>4+</sup> (5 $d^5$ , low-spin S = 1/2) magnetism.
- Metal-insulator transition,  $T_M = 120$  K; "complex" antiferromagnetic ordering at  $T_N = T_M$ . Large Ir 5d overlap usually  $\Rightarrow$  metallic conduction. A weak Mott insulator.
- Is Eu<sub>2</sub>Ir<sub>2</sub>O<sub>7</sub> a geometrically frustrated "spin 1/2" system?

#### wLF-μSR:


- Well-defined frequency below  $T_N$ . Commensurate long-range order.
- Dynamic relaxation rela`tively fast, and persists to low temperatures
  - $\Rightarrow$  singular density of low-lying excitations.
  - Observed in other pyrochlores & frustrated systems, but also in unfrustrated BaIrO<sub>3</sub> and Sr<sub>2</sub>IrO<sub>4</sub>.
- Eu<sub>2</sub>Ir<sub>2</sub>O<sub>7</sub> is only *weakly* frustrated (Ramirez frustration parameter  $J_{ex}/T_N \approx 1$ ).
- Persistent relaxation due to *small-gap Mott behavior* rather than frustration?

# Eu<sub>2</sub>Ir<sub>2</sub>O<sub>7</sub>



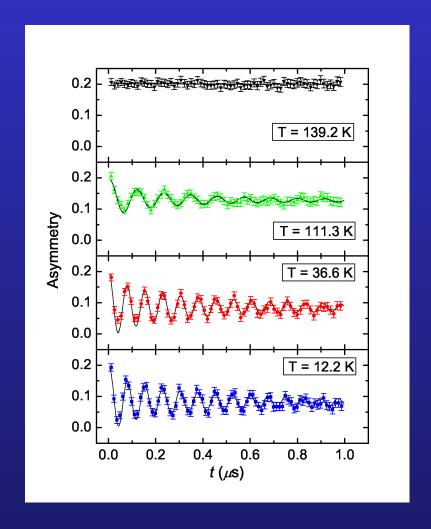
Eu<sub>2</sub>Ir<sub>2</sub>O<sub>7</sub>: pyrochlore structure. Independent Eu and Ir sublattices of corner-sharing tetrahedra.

# **Magnetic Susceptibility**



Clear signature of transition at 120 K.

Large bifurcation between field-cooled (FC) and zero-field-cooled (ZFC) data. Spin glass? Complex antiferromagnet?


# Weak longitudinal-field µSR in Eu<sub>2</sub>Ir<sub>2</sub>O<sub>7</sub>

(Weak longitudinal field to decouple nuclear dipolar field above  $T_N$ .)

Weakly damped oscillations below 120 K. *Homogeneous* local field.

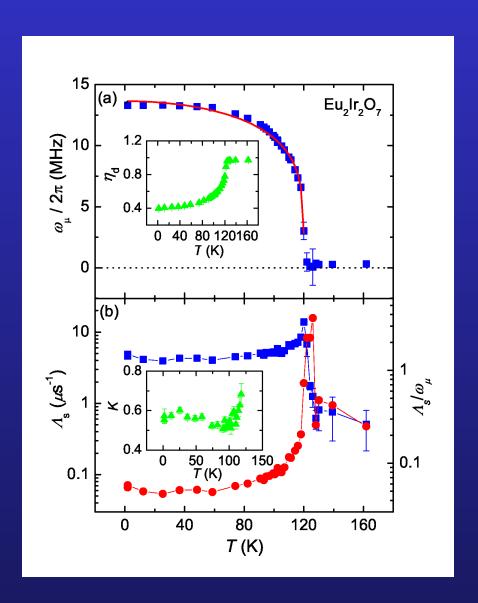
Damping not exponential; best fit by "stretched" exponential  $\exp[-(\Lambda_s t)^K]$ , K < 1.

Late-time dynamic relaxation (not shown): *single exponential*.



#### Static properties: frequency, asymmetries

(a): Frequency  $\omega_{\mu}$  (local static field  $B_{\text{loc}} = \omega_{\mu}/\gamma_{\mu}$ ) sets in sharply at  $T_N$ . A magnetic transition.


At T = 2 K  $B_{loc} \approx 990$  G. Crude estimate of ordered moment:  $\sim 1$   $\mu_B/{\rm Ir}$  ion.

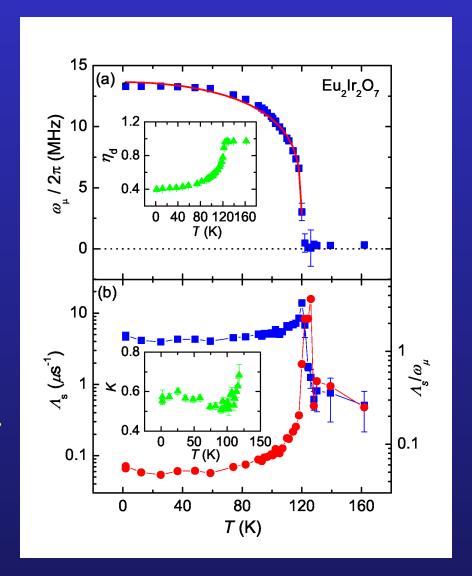
Temperature dependence  $\Rightarrow$  small "critical" exponent  $\beta$  < 1/3.

Insert: late-time (dynamic) asymmetry fraction  $\eta_d = A_d/(A_s + A_d)$ .

Expect  $\eta_d$ = 1/3 in ordered state (powder sample); 1 above  $T_N$ .

Smooth variation  $\Rightarrow$  *distribution* of  $T_N$ .




# Static properties: damping, inhomogeneity

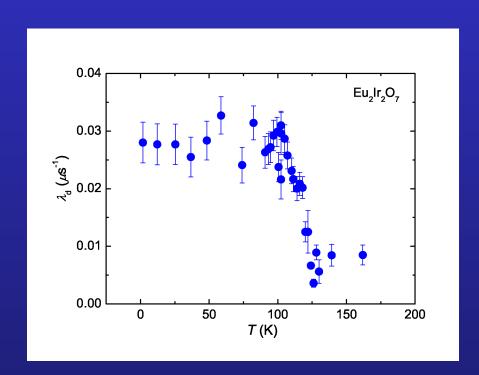
(b): Static damping rate  $\Lambda_s$  from spread in local field.

( Above  $T_N \eta_d$  nearly 1; data either instrumental artifact or second phase.)

Damping is relatively weak:  $Λ_s/ω_μ$  ≈ 5–7% at low temperatures.

Inset: stretching power  $K \approx 0.55$  at low temperatures; increases near  $T_N$ . Increase probably due to distribution of transition temperatures.



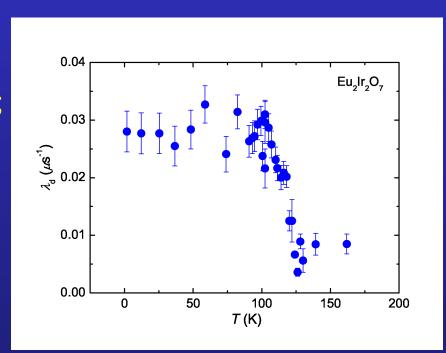

#### **Dynamic relaxation**

Late-time dynamic (spin-lattice) relaxation exponential; rate  $\lambda_d$ 

- is constant  $[0.029(3) \mu s^{-1}]$  below ~100 K,
- shows step below  $T_N$  but no critical divergence. Meanfield-like transition.

Assume *motional narrowing* limit (quasistatic flucts. very unlikely):

- $λ_d ≈ ω_f^2 τ_c$ ,  $ω_f$  = rms fluctuating field in freq. units,  $τ_c$  = correlation time.
- Yields  $1/\tau_c < 2.5 \times 10^{11} \text{ s}^{-1}$ , or ~2 K.




Persistent low-temperature relaxation and homogeneous magnetic order *unexpected*.

In ordinary antiferromagnets  $\lambda_d$  is due to thermal spin-wave excitations; decreases at low temperatures.

Fluctuation rate  $1/\tau_c$  expected to be  $\sim T_N$  near the transition; measured value two orders of magnitude smaller.

In Eu<sub>2</sub>Ir<sub>2</sub>O<sub>7</sub> fluctuations are *slow*, but relaxation rate *does not decrease at low temperatures*.



#### Discussion: whence persistent relaxation?

Persistent relaxation often seen in geometrically frustrated systems.

Indicates strongly enhanced (singular) density of low-lying excitations.

#### Mechanisms?

- For rare-earth non-Kramers ion with nonmagnetic CEF ground state (e.g., Pr³+ in filled skutterudite PrOs₄Sb₁₂) hyperfine-enhanced nuclear magnetism can couple to muon spin.
- Similar hyperfine effect from Eu<sup>3+</sup> spin-orbit-split J > 0 multiplet, but effective Eu nuclear moment is *reduced*. No other candidate nuclei in Eu<sub>2</sub>Ir<sub>2</sub>O<sub>7</sub>.
- → mechanism must be *electronic in origin*, associated with Ir<sup>4+</sup> magnetism.

# Is Eu<sub>2</sub>Ir<sub>2</sub>O<sub>7</sub> highly frustrated?

Ramirez frustration parameter  $J_{\rm ex}/T_{\rm N}$ : large in highly frusrated materials.

- Usually estimate exchange constant  $J_{\rm ex}$  from paramagnetic Curie-Weiss temperature.
- But  $\chi(T)$  not Curie-Weiss in metallic state (no local moments).
- But  $T_N$  is relatively high, and susceptibility is relatively large.
- $\Rightarrow$ unlikely that  $J_{ex} >> T_N$ . Eu<sub>2</sub>Ir<sub>2</sub>O<sub>7</sub> appears to be *weakly frustrated*.
- *Unfrustrated* iridates BaIrO<sub>3</sub> and Sr<sub>2</sub>IrO<sub>4</sub> also exhibit persistent relaxation.
- Conclusion: frustration might not be mechanism for persistent relaxation in  $Eu_2Ir_2O_7$ . Look for other candidates.

## Weak Mott insulator $\Rightarrow$ new dynamics?

Ir-based materials: large Ir 5*d* wave functions weaken on-site repulsion.

- Even if MI transition & AFM retained (e.g., strong S-O coupling), 5*d* electrons *not well localized*.
- − ⇒gap energy  $\Delta_g(T) \approx k_B T_N$ . In Eu<sub>2</sub>Ir<sub>2</sub>O<sub>7</sub>  $\Delta_g$ (max.) ≈ 10 meV from transport measurements.
- Topological Mott insulating states? Unlikely; spin effects in 3D topological insulators confined to sample surface.
- *Speculation*: charge/spin fluctuations over gap might be involved in slow spin excitations. *New mechanism* for persistent dynamics?

#### **Conclusions**

Uniform  $B_{loc}$  in AFM  $Eu_2Ir_2O_7 \Rightarrow homogeneous$  long-range order.

- Rules out quantum spin liquid, spin-glass-like ground states.
- Magnetic structure not determined. (Ir nuclei capture thermal neutrons; probably need resonant x-ray magnetic Bragg diffraction.)

#### Dynamic muon spin relaxation:

- persistent low-temperature spin fluctuations,
- frustration probably *weak*.

Low-lying excitations associated with *weak Mott insulating state*?

Studies of other iridates, frustrated and unfrustrated, desirable.

#### **Thanks**

- To S. R. Kreitzman, B. Hitti, G. D. Morris, & staff of TRIUMF Centre for Molecular and Materials Science, for their technical assistance;
- To W. P. Beyermann and J. Morales for help during experiments;
- To P. J. Baker, L. Balents, S. Raghu, and C. M. Varma for useful comments;
- To the U.S. NSF, for support under Grants 0422674 & 0801407 (Riverside) and 0604015 (Los Angeles);
- For Grants-in-aid for scientific Research from JSPS and MEXT (Tokyo).