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Abstract

Data were numerically generated which simulated that
taken in an actual muon spin rotation (µSR) experiment.
Two different mathematical functions were used in the gen-
eration of the data: Gaussian and back-to-back exponen-
tials. This clean data was then given statistical noise as per
a Poisson deviate algorithm to simulate the effects of ac-
tual experimental noise (statistics). Fits to this now noisy
data were done with both Gaussian and back-to-back fitting
functions in an effort to see if the fitting functions could dis-
tinguish between the underlying generating functions, and
at what level of statistics such a distinction could occur. Our
results show that for data derived from symmetric functions
both Gaussian and back-to-back fits mimic each other, but
are separated by a constant amount. For asymmetrically
derived data, however, the Gaussian fits do not do well ex-
cept for fairly small asymmetry, whereas the back-to-back
function fits well. Using back-to-back fitting functions may,
therefore, give more reliable second moments for real data
with asymmetric line shapes.

1. Gaussian

THE standard Gaussian fit function is:

As(t) = ae−
σ2t2

2 cos(ωt + φ) (1)

where a is the polarization asymmetry, ω is the average pre-
cession frequency, φ is the initial phase angle, and σ is the
second moment of the assumed underlying Gaussian field
distribution. However, not all samples have Gaussian-like
field distributions, and in some cases a direct Fourier trans-
form of the asymmetry data can show very asymmetric field
distributions[1, 2, 3, 4]. Theoretical calculations for ideal,
triangular magnetic flux line lattices also show very asym-
metric field distributions[5, 6, 8]. This suggests that using a
Gaussian function for time-space fits (reflecting an underly-
ing Gaussian field distribution via a Fourier transform) may
not be the best approach.

2. Alternative approach

INSTEAD of using a Gaussian function, it has been sug-
gested that exponential functions, of appropriate forms,

may be a good alternative[5, 6, 7]. Here, we have followed
what was done in reference [7] in what was called a back-
to-back exponential function. The frequency space repre-
sentation can be defined by the following

n(ω) =

{

a e(ω−ωp)τL (ω < ωp)

a e(ωp−ω)τR (ω > ωp)
(2)

where ωp is the the frequency of the peak of the distribu-
tion, a is a normalization constant, and τL and τR are de-
cay constants to the left and right of the peak, respectively.
This function, once properly normalized, has an analytical
Fourier transform which is:

G(t) = A

[

(r1(t) + r2(t)) cos(ωt + φ)+
t(r1(t)/τL − r2(t)/τR) sin(ωt + φ)

]

(3)

where

r1(t) = τR

(τL+τR)(1+(t/τL)2)
r2(t) = τL

(τL+τR)(1+(t/τR)2) (4)

This equation can then be used to fit asymmetry µSR data.
Further, once values for τL and τR are found from a fit, we
can calculate the second and third moments of the resulting
distribution. These are
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3. The Plan

• Generate single histo simulated data of Gaussian, sym-
metric b2b, and asymmetric b2b

• Vary statistics, and send to Poisson deviate routine for
noise

• Create asymmetry representation of noisy data

• Fit data with Gaussian, symmetric b2b and/or asymmet-
ric b2b function

4. Results

FITS to simulated data of Gaussian origin:
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Figure 1: Left panel: results from fitting Gaussian and back-
to-back exponentials to data derived from a Gaussian line
shape. Right panel: a Gaussian function (points) that has
been fit with a back-to-back function (curve). The Gaus-
sian has second moment of 0.25 µs−1 and the back-to-back
fit gives 0.36(1) µs−1. The two become nearly indistinguish-
able by ≃ 0.05 µs−1.

FITS to simulated data of symmetric back-to-back origin:
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Figure 2: Fit results for both Gaussian and back-to-back
functions when applied to data generated from a symmetric
back-to-back function. For the left panel, the second mo-
ment was 0.20 µs−1 and for the right panel it was 0.04 µs−1.

FITS to simulated data of asymmetric back-to-back origin:
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Figure 3: The parameter τL was held fixed at 5.0 µs and
τR was varied. There were ∼ 7 × 106 events for each his-
togram. The value 1/τR = 0.2 µs−1 corresponds to a sym-
metric back-to-back situation, and so the separation at this
point is essentially what was seen in the earlier figures. The
dotted line is the actual value of the third moment calcu-
lated from the parameter values used initially to generate
the data.

5. Conclusion

We have discussed a numerical study comparing a back-to-
back exponential fitting function in time space to the more
standard Gaussian fitting function for µSR data analysis.
It was shown, using simulated noisy data, that both func-
tions’ results mimic each other, but are separated vertically,
for symmetric data derived from either. For asymmetric
data (derived from the back-to-back function), the Gaus-
sian fits do not well represent the underlying asymmetric
line shape except for slight asymmetry, whereas the back-
to-back function does quite well.
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