Spin freezing and dynamics in the quasi-2D triangular-lattice

antiferromagnets 7Ga₂S₄ (7 = Fe, Ni)

S. Zhao^a, D. E. MacLaughlin^{a,b}, O. O. Bernal^c, J. M. Mackie^a,

Y. Nambu^b, T. Higo^b, and S. Nakatsuji^b

b Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan

^c Department of Physics and Astronomy, California State University, Los Angeles, California 90032, U.S.A

Summary

Results of muon spin relaxation (μSR) and dc magnetic susceptibility measurements on the 2D triangular-lattice antiferromagnet FeGa₂S₄ are reported and compared with previous data from NiGa₂S₄. In FeGa₂S₄ μ SR data indicate a critical slowing-down of magnetic fluctuations and a transition at $T^* \approx 31$ K, which is twice the bifurcation temperature $T_f \approx 16$ K from magnetic susceptibility measurements. As the applied field increases, T_f decreases, consistent with a spin glass-like freezing at this temperature. This could suggest a viscous spin liquid state for $T_f < T < T$ T^* , as has been attributed to NiGa₂S₄ with $T_f \approx 3$ K from ac susceptibility and $T^* \approx 8.5$ K from both NMR and μ SR. The inhomogeneous dynamic muon spin relaxation rate λ_d scales for both compounds (Fig. 3 below), suggesting a common mechanism for their spin dynamics. Exponential critical slowing down of spin fluctuations [$\lambda_d \propto T^{3/2}$ exp($-T_0/T$)], expected in a 2D Heisenberg antiferromagnet, is observed in both compounds. The similar spin dynamics in NiGa₂S₄ (S = 1) and FeGa₂S₄ (S = 1vortex excitations (Kawamura *et al*.).

Motivation

NiGa₂S₄ was first studied by Nakatsuji et al. to search for novel ground states in an exact triangular lattice. The dc magnetic susceptibility indicates a transition at $T \approx 8.5$ K, which is also the temperature where μ SR experiments observe critical slowing down and the onset of quasistatic spin freezing.

In the isostructural compound FeGa₂S₄, dc magnetic susceptibility measurements exhibit a ZFC-FC bifurcation at $T \approx 16$ K (figure), which could be a freezing temperature similar to the case of NiGa₂S₄. However, recent studies indicate the ZFC-FC bifurcation at 8.5 K in NiGa₂S₄ is due to an impurity effect, and spin-glass-like freezing is observed at a lower temperature.

Is 16 K the critical slowing down temperature in FeGa₂S₄?

Experimental setup (figure stolen from Jeff & Jess)

Depolarization function:

 $A(t) = A_s \exp[-\Lambda_s t] J_0(\omega_{\mu} t)$ $+ A_d \exp[-(\lambda_d t)^K]$

Results and Discussion

Figure 1: Temperature dependence of magnetic susceptibility $\chi = M/H$ in FeGa₂S₄ from 2 K to 300 K for various applied magnetic fields. T_f and T^* are the spin freezing temperature and critical slowing-down temperature, respectively.

Figure 2: Temperature dependence of dynamic muon spin relaxation rate λ_d in FeGa₂S₄ and NiGa₂S₄. Inset: representative early-time asymmetry data. The damped oscillation at early times is not visible due to the spectrometer dead time.

Figure 3: (a) Scaled temperature dependence of dynamic muon spin relaxation rate λ_d in FeGa₂S₄ and NiGa₂S₄. Inset: 2D critical slowing down of spin fluctuations, leading to λ_d $\propto T^{3/2} \exp(-T_0/T)$. (b) Stretched-exponential power K in FeGa₂S₄ and NiGa₂S₄.

<u>Features:</u>

- 1. Spin fluctuations above T^* exhibit 2D dynamic critical behavior in both compounds. (inset of Fig. 3a).
- 2. Comparable extended critical regimes in both compounds: $T_f/T^* \approx 0.4$ (NiGa₂S₄), ≈ 0.5 (FeGa₂S₄) (Fig. 3a).
- 3. Similar stretching power *K* in both compounds (Fig. 3b).

Are Z₂ vortex excitations behind these similar spin dynamics?

Z₂-vortex scenario:

The antiferromagnetic (AF) Heisenberg model on a 2D triangular lattice is a typical geometrically frustrated magnet. It was demonstrated by Kawamura some time ago that the model bears a topological quantum number, or the so-called Z_2 vortex. It was found that that a triangular 2DHAF exhibits a thermodynamic phase transition at finite temperature with finite spin correlation length and correlation time due to binding and unbinding of Z₂ vortices.

This thermodynamic phase transition is predicted to have an extended critical regime, as has been suggested in NaCrO₂, with $T_f/T^* \approx 0.3$, and in NiGa₂S₄, with $T_f/T^* \approx 0.4$. Here FeGa₂S₄ is found to have a critical regime with $T_f/T^* \approx 0.5$. A recent study of the classical AF Heisenberg model on a

2D triangular-lattice with bilinear and biquadratic exchange indicates a topological phase transition that is driven by Z_2 vortices for small biquadratic coupling |Q|, in which case a Z_2 vortex corresponds to a 2π rotation of the 120° spin structure around a vortex core. The thermodynamic transition temperature varies for different Q values. The observed critical slowing down of magnetic fluctuations in these systems could be a result of such a thermodynamic process.

However, in NiGa₂S₄ the quasistatic field below T^* follows a mean-field temperature dependence, suggesting more conventional spin freezing. In FeGa₂S₄ this field is much larger, and has not yet been accurately measured.

Conclusions:

Our µSR data indicate similar spin dynamics in both compounds. This and the viscous spin liquid regime or extended critical regime suggest classical Z_2 vortex excitations. In contrast, the weak and conventional lowtemperature muon spin relaxation in Fe₂Ga₂S₄ ($\lambda_d \approx 0.1$ μs⁻¹ at 2 K and decreasing) suggests that the persistent low-temperature relaxation in Ni₂Ga₂S₄ ($\lambda_d \approx 5 \mu s^{-1}$ at 25 mK) could have a quantum origin.